Machine learning - derived major adverse event prediction of patients undergoing transvenous lead extraction: Using the ESC EHRA EORP European lead extraction ConTRolled ELECTRa registry.

Opis bibliograficzny

Machine learning - derived major adverse event prediction of patients undergoing transvenous lead extraction: Using the ESC EHRA EORP European lead extraction ConTRolled ELECTRa registry. [AUT. KORESP.] VISHAL S. MEHTA, [AUT.] HUGH O’BRIEN, MARK K. ELLIOTT, NADEEV WIJESURIYA, ANGELO AURICCHIO, SALMA AYIS, CARINA BLOMSTROM-LUNDQVIST, MARIA G. BONGIORNI, CHRISTIAN BUTTER, JEAN-CLAUDE DEHARO, JUSTIN GOULD, CHARLES KENNERGREN, KARL-HEINZ KUCK, ANDRZEJ KUTARSKI, CHRISTOPHE LECLERCQ, ALDO P. MAGGIONI, BALDEEP S. SIDHU, TOM WONG, STEVEN NIEDERER, CHRISTOPHER A. RINALDI, ON BEHALF OF THE ELECTRA INVESTIGATORS GROUP. HeartRhythm 2022 vol. 19 nr 6 s. 885-893, bibliogr. poz. 35. DOI: 10.1016/j.hrthm.2021.12.036
Skopiowane!
Kliknij opis aby skopiować do schowka

Szczegóły publikacji

Źródło:
HeartRhythm 2022 vol. 19 nr 6, s. 885-893, bibliogr. poz. 35.
Rok: 2022
Język: angielski
Charakter formalny: Artykuł w czasopiśmie
Typ MNiSW/MEiN: Praca Oryginalna

Streszczenia

Background Transvenous lead extraction (TLE) remains a high-risk procedure. Objective The purpose of this study was to develop a machine learning (ML)–based risk stratification system to predict the risk of major adverse events (MAEs) after TLE. A MAE was defined as procedure-related major complication and procedure-related death. Methods We designed and evaluated an ML-based risk stratification system trained using the European Lead Extraction ConTRolled (ELECTRa) registry to predict the risk of MAEs in 3555 patients undergoing TLE and tested this on an independent registry of 1171 patients. ML models were developed, including a self-normalizing neural network (SNN), stepwise logistic regression model (“stepwise model”), support vector machines, and random forest model. These were compared with the ELECTRa Registry Outcome Score (EROS) for MAEs. Results There were 53 MAEs (1.7%) in the training cohort and 24 (2.4%) in the test cohort. Thirty-two clinically important features were used to train the models. ML techniques were similar to EROS by balanced accuracy (stepwise model: 0.74 vs EROS: 0.70) and superior by area under the curve (support vector machines: 0.764 vs EROS: 0.677). The SNN provided a finite risk for MAE and accurately identified MAE in 14 of 169 “high (>80%) risk” patients (8.3%) and no MAEs in all 198 “low (<20%) risk” patients (100%). Conclusion ML models incrementally improved risk prediction for identifying those at risk of MAEs. The SNN has the additional advantage of providing a personalized finite risk assessment for patients. This may aid patient decision making and allow better preoperative risk assessment and resource allocation.

Open Access

Tryb dostępu: otwarte czasopismo Wersja tekstu: ostateczna wersja opublikowana Licencja: Creative Commons - Uznanie Autorstwa (CC-BY) Czas udostępnienia: w momencie opublikowania

Identyfikatory

BPP ID: (27, 95851) wydawnictwo ciągłe #95851

Metryki

140,00
Punkty MNiSW/MEiN
5,500
Impact Factor
Q1
SCOPUS
0
Punktacja wewnętrzna

Eksport cytowania

Wsparcie dla menedżerów bibliografii:
Ta strona wspiera automatyczny import do Zotero, Mendeley i EndNote. Użytkownicy z zainstalowanym rozszerzeniem przeglądarki mogą zapisać tę publikację jednym kliknięciem - ikona pojawi się automatycznie w pasku narzędzi przeglądarki.

Skopiowane!

Punkty i sloty autorów

AutorDyscyplinaPkD / PkDAutSlot
Kutarski Andrzej, prof. dr hab. n. med.nauki medyczne140,00001,0000

Punkty i sloty dyscyplin

DyscyplinaPkD / PkDAutSlot
nauki medyczne140,00001,0000

Informacje dodatkowe

Zewnętrzna baza danych:Scopus
Web of Science
Rekord utworzony:3 czerwca 2022 17:03
Ostatnia aktualizacja:15 stycznia 2026 11:21