Menu
Naciśnij / aby szukać

Jak wyszukiwać?

  • 1 Wyszukiwanie od początku wyrazu: Wyraz preane znajdzie "preanestetyczny", ale anestetyczny nie znajdzie tego słowa (wyszukiwanie patrzy tylko na początek wyrazów)
  • - Wykluczanie słów (znak minus): Poprzedzenie wyrazu znakiem - znajdzie wszystkie tytuły NIE zawierające danego słowa, np. -onkologia znajdzie prace bez słowa "onkologia"
  • " Wyszukiwanie całych fraz (cudzysłów): Cudzysłów powoduje szukanie całych ciągów znaków w tej samej kolejności. Np. "Uniwersytet Medyczny" wyszuka tylko prace z dokładnie tą nazwą, podczas gdy wpisanie bez cudzysłowu może znaleźć "Medyczny Uniwersytet"
  • Nawigacja klawiaturą: Użyj / aby otworzyć wyszukiwanie, strzałek do nawigacji po wynikach, ENTER aby przejść do wybranej pozycji, lub ESC aby zamknąć okno

Deep learning approaches to natural language processing for digital twins of patients in psychiatry and neurological rehabilitation.

Opis bibliograficzny

Deep learning approaches to natural language processing for digital twins of patients in psychiatry and neurological rehabilitation. [AUT. KORESP.] EMILIA MIKOŁAJEWSKA, [AUT.] JOLANTA MASIAK. Electronics [online] 2025 vol. 14 nr 10 [art. nr] 2024, s. 1-20, bibliogr. poz. 68, [przeglądany 2 czerwca 2025]. Dostępny w: https://www.mdpi.com/2079-9292/14/10/2024. DOI: 10.3390/electronics14102024
Kliknij opis aby skopiować do schowka

Szczegóły publikacji

Źródło:
Electronics [online] 2025 vol. 14 nr 10, [art. nr] 2024, s. 1-20, bibliogr. poz. 68.
Rok: 2025
Język: angielski
Charakter formalny: Artykuł w czasopiśmie
Typ MNiSW/MEiN: Praca Przeglądowa

Streszczenia

Deep learning (DL) approaches to natural language processing (NLP) offer powerful tools for creating digital twins (DTs) of patients in psychiatry and neurological rehabilitation by processing unstructured textual data such as clinical notes, therapy transcripts, and patient-reported outcomes. Techniques such as transformer models (e.g., BERT, GPT) enable the analysis of nuanced language patterns to assess mental health, cognitive impairment, and emotional states. These models can capture subtle linguistic features that correlate with symptoms of degenerative disorders (e.g., aMCI) and mental disorders such as depression or anxiety, providing valuable insights for personalized treatment. In neurological rehabilitation, NLP models help track progress by analyzing a patient’s language during therapy, such as recovery from aphasia or cognitive decline caused by neurological deficits. DL methods integrate multimodal data by combining NLP with speech, gesture, and sensor data to create holistic DTs that simulate patient behavior and health trajectories. Recurrent neural networks (RNNs) and attention mechanisms are commonly used to analyze time-series conversational data, enabling long-term tracking of a patient’s mental health. These approaches support predictive analytics and early diagnosis by predicting potential relapses or adverse events by identifying patterns in patient communication over time. However, it is important to note that ethical considerations such as ensuring data privacy, avoiding bias, and ensuring explainability are crucial when implementing NLP models in clinical settings to ensure patient trust and safety. NLP-based DTs can facilitate collaborative care by summarizing patient insights and providing actionable recommendations to medical staff in real time. By leveraging DL, these DTs offer scalable, data-driven solutions to promote personalized care and improve outcomes in psychiatry and neurological rehabilitation. Keywords: artificial intelligence; deep learning; mental health; neurologic deficit; natural language processing; psychiatry; neurorehabilitation

Open Access

Tryb dostępu: otwarte czasopismo Wersja tekstu: ostateczna wersja opublikowana Licencja: Creative Commons - Uznanie Autorstwa (CC-BY) Czas udostępnienia: w momencie opublikowania

Identyfikatory

BPP ID: (27, 102732) wydawnictwo ciągłe #102732

Metryki

100,00
Punkty MNiSW/MEiN
2,600
Impact Factor
Q1
SCOPUS
0
Punktacja wewnętrzna

Eksport cytowania

Wsparcie dla menedżerów bibliografii:
Ta strona wspiera automatyczny import do Zotero, Mendeley i EndNote. Użytkownicy z zainstalowanym rozszerzeniem przeglądarki mogą zapisać tę publikację jednym kliknięciem - ikona pojawi się automatycznie w pasku narzędzi przeglądarki.

Punkty i sloty autorów

AutorDyscyplinaPkD / PkDAutSlot
Masiak Jolanta (Przychoda), prof. dr hab. n. med. i n. o zdr.nauki medyczne100,00001,0000

Punkty i sloty dyscyplin

DyscyplinaPkD / PkDAutSlot
nauki medyczne100,00001,0000

Informacje dodatkowe

Zewnętrzna baza danych:• Web of Science
• Scopus
Rekord utworzony:2 czerwca 2025 18:29
Ostatnia aktualizacja:20 października 2025 11:27

Informacja o ciasteczkach (tych internetowych, nie tych słodkich i chrupiących...)

Ta strona wykorzystuje pliki cookie do poprawy funkcjonalności i analizy ruchu. Możesz zaakceptować wszystkie pliki cookie lub zarządzać swoimi preferencjami prywatności. Nawet, jeżeli nie zgodzisz się na używanie plików cookie na tej stronie, to informację o tym musimy zapamiętać w formie... pliku cookie, zatem jeżeli chcesz zadbać o swoją prywatność w pełni, zapoznaj się z informacjami, jak zupełnie wyłączyć możliwości śledzenia Ciebie w internecie.

✓ Zgadzam się ✗ Nie zgadzam się