Menu
Naciśnij / aby szukać

Jak wyszukiwać?

  • 1 Wyszukiwanie od początku wyrazu: Wyraz preane znajdzie "preanestetyczny", ale anestetyczny nie znajdzie tego słowa (wyszukiwanie patrzy tylko na początek wyrazów)
  • - Wykluczanie słów (znak minus): Poprzedzenie wyrazu znakiem - znajdzie wszystkie tytuły NIE zawierające danego słowa, np. -onkologia znajdzie prace bez słowa "onkologia"
  • " Wyszukiwanie całych fraz (cudzysłów): Cudzysłów powoduje szukanie całych ciągów znaków w tej samej kolejności. Np. "Uniwersytet Medyczny" wyszuka tylko prace z dokładnie tą nazwą, podczas gdy wpisanie bez cudzysłowu może znaleźć "Medyczny Uniwersytet"
  • Nawigacja klawiaturą: Użyj / aby otworzyć wyszukiwanie, strzałek do nawigacji po wynikach, ENTER aby przejść do wybranej pozycji, lub ESC aby zamknąć okno

Application of convolutional gated recurrent units U-Net for distinguishing between retinitis pigmentosa and cone-rod dystrophy.

Opis bibliograficzny

Application of convolutional gated recurrent units U-Net for distinguishing between retinitis pigmentosa and cone-rod dystrophy. [AUT.] MARIA SKUBLEWSKA-PASZKOWSKA, PAWEŁ POWROŹNIK, ROBERT REJDAK, KATARZYNA NOWOMIEJSKA. Acta Mech. Autom. 2024 vol. 18 nr 3 s. 505-513, bibliogr. poz. 38. DOI: 10.2478/ama-2024-0054
Kliknij opis aby skopiować do schowka

Szczegóły publikacji

Źródło:
Acta Mechanica et Automatica 2024 vol. 18 nr 3, s. 505-513, bibliogr. poz. 38.
Rok: 2024
Język: angielski
Charakter formalny: Artykuł w czasopiśmie
Typ MNiSW/MEiN: Praca Oryginalna

Streszczenia

Artificial Intelligence (AI) has gained a prominent role in the medical industry. The rapid development of the computer science field has caused AI to become a meaningful part of modern healthcare. Image-based analysis involving neural networks is a very important part of eye diagnoses. In this study, a new approach using Convolutional Gated Recurrent Units (GRU) U-Net was proposed for the classifying healthy cases and cases with retinitis pigmentosa (RP) and cone–rod dystrophy (CORD). The basis for the classification was the location of pigmentary changes within the retina and fundus autofluorescence (FAF) pattern, as the posterior pole or the periphery of the retina may be affected. The dataset, gathered in the Chair and Department of General and Pediatric Ophthalmology of Medical University in Lublin, consisted of 230 ultra-widefield pseudocolour (UWFP) and ultra-widefield FAF images, obtained using the Optos 200TX device (Optos PLC). The data were divided into three categories: healthy subjects (50 images), patients with CORD (48 images) and patients with RP (132 images). For applying deep learning classification, which rely on a large amount of data, the dataset was artificially enlarged using augmentation involving image manipulations. The final dataset contained 744 images. The proposed Convolutional GRU U-Net network was evaluated taking account of the following measures: accuracy, precision, sensitivity, specificity and F1. The proposed tool achieved high accuracy in a range of 91.00%–97.90%. The developed solution has a great potential in RP diagnoses as a supporting tool.

Open Access

Tryb dostępu: otwarte czasopismo Wersja tekstu: ostateczna wersja opublikowana Licencja: Creative Commons - Uznanie Autorstwa - Użycie niekomercyjne - Bez utworów zależnych (CC-BY-NC-ND) Czas udostępnienia: w momencie opublikowania

Identyfikatory

BPP ID: (27, 100935) wydawnictwo ciągłe #100935

Metryki

100,00
Punkty MNiSW/MEiN
1,100
Impact Factor
Q3
SCOPUS
0
Punktacja wewnętrzna

Eksport cytowania

Wsparcie dla menedżerów bibliografii:
Ta strona wspiera automatyczny import do Zotero, Mendeley i EndNote. Użytkownicy z zainstalowanym rozszerzeniem przeglądarki mogą zapisać tę publikację jednym kliknięciem - ikona pojawi się automatycznie w pasku narzędzi przeglądarki.

Punkty i sloty autorów

AutorDyscyplinaPkD / PkDAutSlot
Nowomiejska Katarzyna, prof. dr hab. n. med.nauki medyczne50,00000,5000
Rejdak Robert, prof. dr hab., dr h.c.nauki medyczne50,00000,5000

Punkty i sloty dyscyplin

DyscyplinaPkD / PkDAutSlot
nauki medyczne100,00001,0000

Informacje dodatkowe

Zewnętrzna baza danych:• Scopus
• Web of Science
Rekord utworzony:2 sierpnia 2024 13:26
Ostatnia aktualizacja:17 października 2025 14:34

Informacja o ciasteczkach (tych internetowych, nie tych słodkich i chrupiących...)

Ta strona wykorzystuje pliki cookie do poprawy funkcjonalności i analizy ruchu. Możesz zaakceptować wszystkie pliki cookie lub zarządzać swoimi preferencjami prywatności. Nawet, jeżeli nie zgodzisz się na używanie plików cookie na tej stronie, to informację o tym musimy zapamiętać w formie... pliku cookie, zatem jeżeli chcesz zadbać o swoją prywatność w pełni, zapoznaj się z informacjami, jak zupełnie wyłączyć możliwości śledzenia Ciebie w internecie.

✓ Zgadzam się ✗ Nie zgadzam się