Knee joint osteoarthritis diagnosis based on selected acoustic signal discriminants using machine learning.

Opis bibliograficzny

Knee joint osteoarthritis diagnosis based on selected acoustic signal discriminants using machine learning. [AUT.] ROBERT KARPIŃSKI. Appl. Comp. Sci. 2022 vol. 18 nr 2 s. 71-85, bibliogr. poz. 62. DOI: 10.35784/acs-2022-14
Skopiowane!
Kliknij opis aby skopiować do schowka

Szczegóły publikacji

Źródło:
Applied Computer Science 2022 vol. 18 nr 2, s. 71-85, bibliogr. poz. 62.
Rok: 2022
Język: angielski
Charakter formalny: Artykuł w czasopiśmie
Typ MNiSW/MEiN: Praca Oryginalna

Streszczenia

This paper presents the results of a preliminary study on simplified diagnosis of osteoarthritis of the knee joint based on generated vibroacoustic processes. The analysis was based on acoustic signals recorded in a group of 50 people, half of whom were healthy, and the other half - people with previously confirmed degenerative changes. Selected discriminants of the signals were determined and statistical analysis was performed to allow selection of optimal discriminants used at a later stage as input to the classifier. The best results of classification using artificial neural networks (ANN) of RBF (Radial Basis Function) and MLP (Multilevel Perceptron) types are presented. For the problem involving the classification of cases into one of two groups HC (Healthy Control) and OA (Osteoarthritis) an accuracy of 0.9 was obtained, with a sensitivity of 0.885 and a specificity of 0.917. It is shown that vibroacoustic diagnostics has great potential in the non-invasive assessment of damage to joint structures of the knee.

Open Access

Tryb dostępu: otwarte czasopismo Wersja tekstu: ostateczna wersja opublikowana Licencja: Creative Commons - Uznanie Autorstwa (CC-BY) Czas udostępnienia: w momencie opublikowania

Identyfikatory

BPP ID: (27, 96470) wydawnictwo ciągłe #96470

Metryki

70,00
Punkty MNiSW/MEiN
0
Impact Factor
0
Punktacja wewnętrzna

Eksport cytowania

Wsparcie dla menedżerów bibliografii:
Ta strona wspiera automatyczny import do Zotero, Mendeley i EndNote. Użytkownicy z zainstalowanym rozszerzeniem przeglądarki mogą zapisać tę publikację jednym kliknięciem - ikona pojawi się automatycznie w pasku narzędzi przeglądarki.

Skopiowane!

Punkty i sloty autorów

AutorDyscyplinaPkD / PkDAutSlot
Karpiński Robert, dr inż.nauki medyczne70,00001,0000

Punkty i sloty dyscyplin

DyscyplinaPkD / PkDAutSlot
nauki medyczne70,00001,0000

Informacje dodatkowe

Zewnętrzna baza danych:Scopus
Rekord utworzony:8 września 2022 16:41
Ostatnia aktualizacja:21 października 2025 10:51